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Abstract

Most results in nonparametric regression theory are developed only for the case of
additive noise. In such a setting many smoothing techniques including wavelet thresh-
olding methods have been developed and shown to be highly adaptive. In this paper
we consider nonparametric regression in exponential families with the main focus on
the natural exponential families with a quadratic variance function, which include, for
example, Poisson regression, binomial regression, and gamma regression. We propose a
unified approach of using a mean-matching variance stabilizing transformation to turn
the relatively complicated problem of nonparametric regression in exponential families
into a standard homoscedastic Gaussian regression problem. Then in principle any
good nonparametric Gaussian regression procedure can be applied to the transformed
data. To illustrate our general methodology, in this paper we use wavelet block thresh-
olding to construct the final estimators of the regression function. The procedures are
easily implementable. Both theoretical and numerical properties of the estimators are
investigated. The estimators are shown to enjoy a high degree of adaptivity and spa-
tial adaptivity with near-optimal asymptotic performance over a wide range of Besov
spaces. The estimators also perform well numerically.
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1 Introduction

Theory and methodology for nonparametric regression is now well developed for the case of
additive noise particularly additive homoscedastic Gaussian noise. In such a setting many
smoothing techniques including wavelet thresholding methods have been developed and
shown to be adaptive and enjoy other desirable properties over a wide range of function
spaces. However, in many applications the noise is not additive and the conventional
methods are not readily applicable. For example, such is the case when the data are counts
or proportions.

In this paper we consider nonparametric regression in exponential families with the
main focus on the natural exponential families with a quadratic variance function (NEF-
QVF). These include, for example, Poisson regression, binomial regression, and gamma
regression. We present a unified treatment of these regression problems by using a mean-
matching variance stabilizing transformation (VST) approach. The mean-matching VST
turns the relatively complicated problem of regression in exponential families into a standard
homoscedastic Gaussian regression problem and then any good nonparametric Gaussian
regression procedure can be applied.

Variance stabilizing transformations and closely related normalizing transformations
have been widely used in many parametric statistical inference problems. See Hoyle (1973),
Efron (1982) and Bar-Lev and Enis (1990). In the more standard parametric problems, the
goal of VST is often to optimally stabilize the variance. That is, one desires the variance of
the transformed variable to be as close to a constant as possible. For example, Anscombe
(1948) introduced VSTs for binomial, Poisson and negative binomial distributions that pro-
vide the greatest asymptotic control over the variance of the resulting transformed variables.
In the context of nonparametric function estimation, Anscombe’s variance stabilizing trans-
formation has also been briefly discussed in Donoho (1993) for density estimation. However,
for our purposes it is much more essential to have optimal asymptotic control over the bias
of the transformed variables. A mean-matching VST minimizes the bias of the transformed
data while also stabilizing the variance.

Our procedure begins by grouping the data into many small size bins, and by then
applying the mean-matching VST to the binned data. In principle any good Gaussian
regression procedure could be applied to the transformed data to construct the final es-
timator of the regression function. To illustrate our general methodology, in this paper
we employ two wavelet block thresholding procedures. Wavelet thresholding methods have
achieved considerable success in nonparametric regression in terms of spatial adaptivity and
asymptotic optimality. In particular, block thresholding rules have been shown to possess
impressive properties. In the context of nonparametric regression local block thresholding
has been studied, for example, in Hall, Kerkyacharian, and Picard (1998), Cai (1999, 2002)
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and Cai and Silverman (2001). In this paper we shall use the BlockJS procedure proposed
in Cai (1999) and the NeighCoeff procedure introduced in Cai and Silverman (2001). Both
estimators were originally developed for nonparametric Gaussian regression. BlockJS first
divides the empirical coefficients at each resolution level into non-overlapping blocks and
then simultaneously estimates all the coefficients within a block by a James-Stein rule.
NeighCoeff also thresholds the empirical coefficients in blocks, but estimates wavelet coef-
ficients individually. It chooses a threshold for each coefficient by referencing not only to
that coefficient but also to its neighbors. Both estimators increase estimation accuracy over
term-by-term thresholding by utilizing information about neighboring coefficients.

Both theoretical and numerical properties of our estimators are investigated. It is
shown that the estimators enjoy excellent asymptotic adaptivity and spatial adaptivity.
The procedure using BlockJS simultaneously attains the optimal rate of convergence under
the integrated squared error over a wide range of the Besov classes. The estimators also
automatically adapt to the local smoothness of the underlying function; they attain the
local adaptive minimax rate for estimating functions at a point. A key step in the technical
argument is the use of the quantile coupling inequality of Komlós, Major and Tusnády
(1975) to approximate the binned and transformed data by independent normal variables.
The procedures are easy to implement, at the computational cost of O(n). In addition to
enjoying the desirable theoretical properties, the procedures also perform well numerically.

Our method is applicable in more general settings. It can be extended to treat non-
parametric regression in general one-parameter natural exponential families. The mean-
matching VST only exists in NEF-QVF (see Section 2). In the general case when the
variance is not a quadratic function of the mean, we apply the same procedure with the
standard VST in place of the mean-matching VST. It is shown that, under slightly stronger
conditions, the same optimality results hold in general. We also note that mean-matching
VST transformations exist for some useful non-exponential families, including some com-
monly used for modeling “over-dispersed” data. Though we do not pursue the details in
the present paper, it appears that because of this our methods can also be effectively used
for nonparametric regressions involving such error distributions.

We should note that nonparametric regression in exponential families has been consid-
ered in the literature. Among individual exponential families, the Poisson case is perhaps
the most studied. Besbeas, De Feis and Sapatinas (2004) provided a review of the literature
on the nonparametric Poisson regression and carried out an extensive numerical compar-
ison of several estimation procedures including Donoho (1993), Kolaczyk (1999a, 1999b)
and Fryźlewicz and Nason (2001). In the case of Bernoulli regression, Antoniadis and
Leblanc (2001) introduced a wavelet procedure based on diagonal linear shrinkers. Unified
treatments for nonparametric regression in exponential families have also been proposed.
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Antoniadis and Sapatinas (2001) introduced a wavelet shrinkage and modulation method
for regression in NEF-QVF and showed that the estimator attains the optimal rate over
the classical Sobolev spaces. Kolaczyk and Nowak (2005) proposed a recursive partition
and complexity-penalized likelihood method. The estimator was shown to be within a
logarithmic factor of the minimax rate under squared Hellinger loss over Besov spaces.

The paper is organized as follows. Section 2 discusses the mean-matching variance
stabilizing transformation for natural exponential families. In Section 3, We first introduce
the general approach of using the mean-matching VST to convert nonparametric regression
in exponential families into a nonparametric Gaussian regression problem, and then present
in detail specific estimation procedures based on the mean-matching VST and wavelet block
thresholding. Theoretical properties of the procedures are treated in Section 4. Section 5
investigates the numerical performance of the estimators. We also illustrate our estimation
procedures in the analysis of two real data sets: a gamma-ray burst data set and a packet
loss data set. Technical proofs are given in Section 6.

2 Mean-matching variance stabilizing transformation

We begin by considering variance stabilizing transformations (VST) for natural exponential
families. As mentioned in the introduction, VST has been widely used in many contexts
and the conventional goal of VST is to optimally stabilize the variance. See, for example,
Anscombe (1948) and Hoyle (1973). For our purpose of nonparametric regression in expo-
nential families, we shall first develop a new class of VSTs, called mean-matching VSTs,
which asymptotically minimize the bias of the transformed variables while at the same time
stabilizing the variance.

Let X1, X2, ..., Xm be a random sample from a distribution in a natural one-parameter
exponential families with the probability density/mass function

q(x|η) = eηx−ψ(η)h(x).

Here η is called the natural parameter. The mean and variance are respectively

µ(η) = ψ′(η), and σ2(η) = ψ′′(η).

We shall denote the distribution by NEF (µ). A special subclass of interest is the one with
a quadratic variance function (QVF),

σ2 ≡ V (µ) = a0 + a1µ + a2µ
2. (1)

In this case we shall write Xi ∼ NQ(µ). The NEF-QVF families consist of six distribu-
tions, three continuous: normal, gamma, and NEF-GHS distributions and three discrete:
binomial, negative binomial, and Poisson. See, e.g., Morris (1982) and Brown (1986).
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Set X =
∑m

i=1 Xi. According to the Central Limit Theorem,

√
m(X/m− µ(η)) L−→ N(0, V (µ(η))), as m →∞.

A variance stabilizing transformation (VST) is a function G : R→ R such that

G′(µ) = V − 1
2 (µ). (2)

The standard delta method then yields

√
m{G(X/m)−G(µ(η))} L−→ N(0, 1).

It is known that the variance stabilizing properties can often be further improved by using
a transformation of the form

Hm(X) = G(
X + a

m + b
) (3)

with suitable choice of constants a and b. See, e.g., Anscombe (1948). In this paper we
shall use the VST as a tool for nonparametric regression in exponential families. For this
purpose, it is more important to optimally match the means than to optimally stabilize the
variance. That is, we wish to choose the constants a and b such that E{Hm(X)} optimally
matches G(µ(η)).

To derive the optimal choice of a and b, we need the following expansions for the mean
and variance of the transformed variable Hm(X).

Lemma 1 Let Θ be a compact set in the interior of the natural parameter space. Then for
η ∈ Θ and for constants a and b

E{Hm(X)} −G(µ(η)) =
1

σ(η)
(a− bµ(η)− µ′′(η)

4µ′(η)
) ·m−1 + O(m−2) (4)

and
V ar{Hm(X)} =

1
m

+ O(m−2). (5)

Moreover, there exist constants a and b such that

E{G(
X + a

m + b
)} −G(µ(η)) = O(m−2) (6)

for all η ∈ Θ with a positive Lebesgue measure if and only if the exponential family has a
quadratic variance function.

The proof of Lemma 1 is given in Section 6. The last part of Lemma 1 can be easily
explained as follows. Equation (4) implies that Equation (6) holds if and only if

a− bµ(η)− µ′′(η)
4µ′(η)

= 0
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i.e., µ′′(η) = 4aµ′(η)− 4bµ(η)µ′(η). Solving this differential equation yields

σ2(η) = µ′(η) = a0 + 4aµ(η)− 2bµ2(η) (7)

for some constant a0. Hence the solution of the differential equation is exactly the subclass
of natural exponential family with a quadratic variance function (QVF).

It follows from Equation (7) that among the VSTs of the form (3) for the exponential
family with a quadratic variance function

σ2 = a0 + a1µ + a2µ
2

the best constants a and b for mean-matching are

a =
1
4
a1 and b = −1

2
a2. (8)

We shall call the VST (3) with the constants a and b given in (8) the mean-matching VST.
Lemma 1 shows that the mean-matching VST only exists in the NEF-QVF families and
with the mean-matching VST the bias E{G(X+a

m+b )} − G(µ(η)) is of the order (m−2). In
contrast, for an NEF without a quadratic variance function, the term a − µ(η)b − µ′′(η)

4µ′(η)

does not vanish for all η with any choice of a and b. And in this case the bias

E{G(
X + a

m + b
)} −G(µ(η)) = O(m−1)

instead of O(m−2) in equation (6). We shall see in Section 4 that this difference has
important implications for nonparametric regression in NEF.

The following are the specific expressions of the mean-matching VST Hm for the five
distributions (other than normal) in the NEF-QVF families.

• Poisson: a = 1/4, b = 0, and Hm(X) = 2
√

(X + 1
4)/m.

• Binomial(r, p): a = 1/4, b = 1
2r , and Hm(X) = 2

√
r arcsin

(√
X+1/4
rm+1/2

)
.

• Negative Binomial(r, p): a = 1/4, b = − 1
2r , and

Hm(X) = 2
√

r ln

(√
X + 1/4
mr − 1/2

+

√
1 +

X + 1/4
mr − 1/2

)
.

• Gamma(r, λ) (with r known): a = 0, b = − 1
2r , and Hm(X) =

√
r ln( X

rm−1/2).

• NEF-GHS(r, λ) (with r known): a = 0, b = − 1
2r , and

Hm(X) =
√

r ln

(
X

rm− 1/2
+

√
1 +

X2

(mr − 1/2)2

)
.
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Figure 1: Comparison of the mean (left panel) and variance (right panel) of the arcsine transfor-

mations for Binomial(30, p) with c = 0 (solid line), c = 1
4 (+ line) and c = 3

8 (dashed line).

Note that the mean-matching VST is different from the more conventional VST that
optimally stabilizes the variance. Take the binomial distribution with r = 1 as an example.
In this case the VST is an arcsine transformation. Let X1, ..., Xm

iid∼ Bernoulli(p) and then
X =

∑m
i=1 Xi ∼ Binomial(m, p). Figure 1 compares the mean and variance of three arcsine

transformations of the form

arcsin

(√
X + c

m + 2c

)

for the binomial variable X with m = 30. The choice of c = 0 gives the usual arcsine
transformation, c = 3/8 optimally stabilizes the variance asymptotically, and c = 1/4
yields the mean-matching arcsine transformation. The left panel of Figure 1 plots the bias

√
m(Ep arcsin(

√
(X + c)/(m + 2c))− arcsin(

√
p))

as a function of p for c = 0, c = 1
4 and c = 3

8 . It is clear from the plot that c = 1
4 is the best

choice among the three for matching the mean. On the other hand, the arcsine transfor-
mation with c = 0 yields significant bias and the transformation with c = 3

8 also produces
noticeably larger bias. The right panel plots the variance of

√
m arcsin(

√
(X + c)/(m + 2c))

for c = 0, c = 1
4 and c = 3

8 . Interestingly, over a wide range of values of p near the center
the arcsine transformation with c = 1

4 is even slightly better than the case with c = 3
8 and

clearly c = 0 is the worst choice of the three. Figure 2 below shows similar behavior for the
Poisson case.

Let us now consider the Gamma distribution with r = 1 as an example for the continuous
case. The VST in this case is a log transformation. Let X1, ..., Xm

iid∼ Exponential(λ).
Then X =

∑m
i=1 Xi ∼ Gamma(m,λ). Figure 3 compares the mean and variance of two log
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Figure 2: Comparison of the mean (left panel) and variance (right panel) of the root transformations

for Poisson(λ) with c = 0 (solid line), c = 1
4 (+ line) and c = 3

8 (dashed line).

transformations of the form
ln

(
X

m− c

)
(9)

for the Gamma variable X with λ = 1 and m ranging from 3 to 40. The choice of c = 0 gives
the usual log transformation, and c = 1/2 yields the mean-matching log transformation.
The left panel of Figure 3 plots the bias as a function of m for c = 0 and c = 1

2 . It is clear
from the plot that c = 1

2 is a much better choice than c = 0 for matching the mean. It
is interesting to note that in this case there do not exist constants a and b that optimally
stabilize the variance. The right panel plots the variance of

√
m ln(X), i.e., c = 0, as a

function of m. In this case, it is obvious that the variances are the same with c = 0 and
c = 1/2 for the variable in (9).
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Figure 3: Comparison of the mean (left panel) and variance (right panel) of the log transformations

for Gamma(m,λ) with c = 0 (solid line) and c = 1
2 (+ line).
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Remark 1 Mean-matching variance stabilizing transformations exist for some other im-
portant families of distributions. We mention two that are commonly used to model “over-
dispersed” data. The first family is often referred to as the gamma-Poisson family. See for
example Johnson, Kemp and Kotz (2005), Berk and MacDonald (2008), and Hilbe (2007).
Let Xi|Zi

ind∼ Poisson(Zi) with Zi
ind∼ Gamma(α, σ), i = 1, .., m. The Zi are latent variables;

only the Xi are observed. The scale parameter, σ, is assumed known, and the mean µ = ασ

is the unknown parameter, 0 < µ < ∞. The resulting family of distributions of each Xi

is a subfamily of the Negative Binomial (r, p) with p = (1 + σ)−1, a fixed constant, and
r = µ/σ. (Here this Negative Binomial family is defined for all r > 0 as having probability
function, P (k) = Γ(k + r)pr(1 − p)k/Γ(k + 1)Γ(r), k = 0, 1, ....) This is a one parameter
family, but it is not an exponential family. It can be verified that a mean-matching variance
stabilizing transformation for this family is given by

Y = Hm(X) = 2

√
X

m
+

σ + 1
4m

.

This transformation has the desired properties (5) and (6) with G(µ) = 2
√

µ. For the
second family, consider the beta-binomial family. See Johnson, Kemp and Kotz (2005).
Here, Xi|Zi

ind∼ Binomial(r, Zi) and Zi
ind∼ Beta(a, b), i = 1, .., m. Again, the Zi are latent

variables; only the Xi are observed. For the family of interest here, we assume a, b are
allowed to vary so that a + b = k, a known constant, and 0 < µ = a/(a + b) < 1. This
family can alternatively be parameterized via µ, σ = µ(1 − µ)/(k + 1). The resulting
one-parameter family of distributions of each Xi is again not a one-parameter exponential
family. It can be verified that a mean-matching variance stabilizing transformation for this
family is given by

Y = Hm(X) = 2
√

r arcsin

√
X + (σ + 1)/4
rm + (σ + 1)/2

.

This transformation has the desired properties (5) and (6) with G(µ) = 2 arcsin
√

µ.

3 Nonparametric regression in exponential families

We now turn to nonparametric regression in exponential families. We begin with the NEF-
QVF. Suppose we observe

Yi
ind.∼ NQ(f(ti)), i = 1, ..., n, ti =

i

n
(10)

and wish to estimate the mean function f(t). In this setting, for the five NEF-QVF families
discussed in the last section the noise is not additive and non-Gaussian. Applying standard
nonparametric regression methods directly to the data {Yi} in general do not yield desirable
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results. Our strategy is to use the mean-matching VST to reduce this problem to a standard
Gaussian regression problem based on a sample {Ỹj : j = 1, ..., T} where

Ỹj ∼ N
(
G (f (tj)) ,m−1

)
, tj = j/T, j = 1, 2, . . . , T.

Here G is the VST defined in (2), T is the number of bins, and m is the number of
observations in each bin. The values of T and m will be specified later.

We begin by dividing the interval into T equi-length subintervals with m = n/T ob-
servations in each subintervals. Let Qj be the sum of observations on the j-th subinterval
Ij = [ j−1

T , j
T ), j = 1, 2, . . . T ,

Qj =
jm∑

i=(j−1)m+1

Yi. (11)

The sums {Qj} can be treated as observations for a Gaussian regression directly, but this
in general leads to a heteroscedastic problem. Instead, we apply the mean-matching VST
discussed in Section 2, and then treat Hm(Qj) as new observations in a homoscedastic
Gaussian regression problem. To be more specific, let

Y ∗
j = Hm(Qj) = G(

Qj + a

m + b
), j = 1, · · · , T, (12)

where the constants a and b are chosen as in Equation (8) to match the means. The
transformed data Y ∗ = (Y ∗

1 , . . . , Y ∗
T ) is then treated as the new equi-spaced sample for a

nonparametric Gaussian regression problem.
We will first estimate G(f(ti)), then take a transformation of the estimator to estimate

the mean function f . After the original regression problem is turned into a Gaussian
regression problem through binning and the mean-matching VST, in principle any good
nonparametric Gaussian regression method can be applied to the transformed data {Y ∗

j }
to construct an estimate of G(f(·)). The general ideas for our approach can be summarized
as follows.

1. Binning: Divide {Yi} into T equal length intervals between 0 and 1. Let Q1, Q2, ..., QT

be the sum of the observations in each of the intervals. Later results suggest a choice
of T satisfying T ³ n3/4 for the NEF-QVF case and T ³ n1/2 for the non-QVF case.
See Section 4 for details.

2. VST: Let Y ∗
j = Hm(Qj), j = 1, · · · , T , and treat Y ∗ = (Y ∗

1 , Y ∗
2 , . . . , Y ∗

T ) as the new
equi-spaced sample for a nonparametric Gaussian regression problem.

3. Gaussian Regression: Apply your favorite nonparametric regression procedure to
the binned and transformed data Y ∗ to obtain an estimate Ĝ (f) of G (f).
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4. Inverse VST: Estimate the mean function f by f̂ = G−1
(
Ĝ (f)

)
. If Ĝ (f) is not in

the domain of G−1 which is an interval between a and b (a and b can be ∞), we set
G−1

(
Ĝ(f)

)
= G−1(a) if Ĝ(f) < a and set G−1

(
Ĝ(f)

)
= G−1 (b) if Ĝ (f) > b. For

example, G−1 (a) = 0 when a < 0 in the case of Negative Binomial and NEF-GHS
distributions.

3.1 Effects of binning and VST

As mentioned earlier, after binning and the mean-matching VST, one can treat the trans-
formed data {Y ∗

j } as if they were data from a homoscedastic Gaussian nonparametric re-
gression problem. A key step in understanding why this procedure works is to understand
the effects of binning and the VST. Quantile coupling provides an important technical tool
to shed insights on the procedure.

The following result, which is a direct consequence of the quantile coupling inequality
of Komlós, Major and Tusnády (1975), shows that the binned and transformed data can
be well approximated by independent normal variables.

Lemma 2 Let Xi
iid∼ NQ(µ) with variance V for i = 1, ..., m and let X =

∑m
i=1 Xi.

Under the assumptions of Lemma 1, there exists a standard normal random variable Z ∼
N(0, 1) and constants c1, c2, c3 > 0 not depending on m such that whenever the event
A = {|X −mµ| ≤ c1m} occurs,

|X −mµ−
√

mV Z| < c2Z
2 + c3. (13)

Hence, for large m, X can be treated as a normal random variable with mean mµ and
variance mV . Let Y = Hm(X) = G(X+a

m+b ), ε = EY − G(µ) and Z be a standard normal
variable satisfying (13). Then Y can be written as

Y = G(µ) + ε + m− 1
2 Z + ξ (14)

where
ξ = G(

X + a

m + b
)−G(µ)− ε−m− 1

2 Z. (15)

In the decomposition (14), ε is the deterministic approximation error between the mean
of Y and its target value G(µ) and ξ is the stochastic error measuring the difference of Y

and its normal approximation. It follows from Lemma 1 that when m is large, ε is “small”,
|ε| ≤ cm−2 for some constant c > 0. The following result, which is proved in Section 6.1,
shows that the random variable ξ is “stochastically small”.
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Lemma 3 Let Xi
iid∼ NQ(µ) with variance V for i = 1, ..., m, and X =

∑m
i=1 Xi. Let Z be

the standard normal variable given as in Lemma 2 and let ξ be given as in (15). Then for
any integer k ≥ 1 there exists a constant Ck > 0 such that for all λ ≥ 1 and all a > 0,

E|ξ|k ≤ Ckm
−k and P(|ξ| > a) ≤ Ck(am)−k. (16)

The discussion so far has focused on the effects of the VST for i.i.d. observations. In
the nonparametric function estimation problem mentioned earlier, observations in each bin
are independent but not identically distributed since the mean function f is not a constant
in general. However, through coupling, observations in each bin can in fact be treated as
if they were i.i.d. random variables when the function f is smooth. Let Xi ∼ NQ(µi),
i = 1, ...,m, be independent. Here the means µi are “close” but not equal. Let µ be a value
close to the µi’s. The analysis given in Section 6.1 shows that Xi can in fact be coupled
with i.i.d. random variables Xi,c where Xi,c

iid∼ NQ(µ). See Lemma 4 in Section 6.1 for a
precise statement.

How well the transformed data {Y ∗
j } can be approximated by an ideal Gaussian regres-

sion model depends partly on the smoothness of the mean function f . For 0 < d ≤ 1, define
the Lipschitz class Λd(M) by

Λd(M) = {f : |f(t1)− f(t2)| ≤ M |t1 − t2|d 0 ≤ t1, t2 ≤ 1}.

and
F d(M, ε, v) = {f : f ∈ Λd(M), f(t) ∈ [ε, v] , for all x ∈ [0, 1]},

where [ε, v] with ε < v is a compact set in the interior of the mean parameter space of the
natural exponential family. Lemmas 1, 2, 3 and 4 together yield the following result which
shows how far away are the transformed data {Y ∗

j } from the ideal Gaussian model.

Theorem 1 Let Y ∗
j = G(Qj+a

m+b ) be given as in (12) and let f ∈ F d(M, ε, v). Then Y ∗
j can

be written as
Y ∗

j = G(f(
j

T
)) + εj + m− 1

2 Zj + ξj , j = 1, 2, . . . , T, (17)

where Zj
i.i.d.∼ N(0, 1), εj are constants satisfying |εj | ≤ c

(
m−2 + T−d

)
and consequently

for some constant C > 0
1
T

T∑

j=1

ε2j ≤ C
(
m−4 + T−2d

)
, (18)

and ξj are independent and “stochastically small” random variables satisfying that for any
integer k > 0 and any constant a > 0

E|ξj |k ≤ Ck log2k m·(m−k+T−dk) and P(|ξj | > a) ≤ Ck log2k m·(m−k+T−dk)a−k (19)

where Ck > 0 is a constant depending only on k, d and M .
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Theorem 1 provides explicit bounds for both the deterministic and stochastic errors.
This is an important technical result which serves as a major tool for the proof of the main
results given in Section 4.

Remark 2 There is a tradeoff between the two terms in the bound (18) for the overall
approximation error 1

T

∑T
j=1 ε2j . There are two sources to the approximation error: one is

the variation of the functional values within a bin and one comes from the expansion of the
mean of Y ∗

j (see Lemma 1). The former is related to the smoothness of the function f and is
controlled by the T−2d term and the latter is bounded by the m−4 term. In addition, there
is the discretization error between the sampled function {G(f(j/T )) : j = 1, ..., T} and the
whole function G(f(t)), which is obviously a decreasing function of T . Furthermore, the
choice of T also affects the stochastic error ξ. A good choice of T makes all three types of
errors negligible relative to the minimax risk. See Section 4.2 for further discussions.

Remark 3 In Section 4 we introduce Besov balls Bα
p,q(M) for the analysis of wavelet

regression methods. A Besov ball Bα
p,q(M) can be embedded into a Lipschitz class Λd (M )́

with d = min (α− 1/p, 1) and some M´> 0.

Although the main focus of this paper is on the NEF-QEF, our method of binning and
VST can be extended to the general one-parameter NEF. This extension is discussed in
Section 4.1 where a version of Theorem 1 for the standard VST is developed in the general
case.

3.2 Wavelet thresholding

One can apply any good nonparametric Gaussian regression procedure to the transformed
data {Y ∗

j } to construct an estimator of the function f . To illustrate our general method-
ology, in the present paper we shall use wavelet block thresholding to construct the final
estimators of the regression function. Before we can give a detailed description of our
procedures, we need a brief review of basic notation and definitions.

Let {φ, ψ} be a pair of father and mother wavelets. The functions φ and ψ are assumed
to be compactly supported and

∫
φ = 1, and dilation and translation of φ and ψ generates

an orthonormal wavelet basis. For simplicity in exposition, in the present paper we work
with periodized wavelet bases on [0, 1]. Let

φp
j,k(t) =

∞∑

l=−∞
φj,k(t− l), ψp

j,k(t) =
∞∑

l=−∞
ψj,k(t− l), for t ∈ [0, 1]

where φj,k(t) = 2j/2φ(2jt − k) and ψj,k(t) = 2j/2ψ(2jt − k). The collection {φp
j0,k, k =

1, . . . , 2j0 ; ψp
j,k, j ≥ j0 ≥ 0, k = 1, ..., 2j} is then an orthonormal basis of L2[0, 1], provided

13



the primary resolution level j0 is large enough to ensure that the support of the scaling
functions and wavelets at level j0 is not the whole of [0, 1]. The superscript “p” will
be suppressed from the notation for convenience. An orthonormal wavelet basis has an
associated orthogonal Discrete Wavelet Transform (DWT) which transforms sampled data
into the wavelet coefficients. See Daubechies (1992) and Strang (1992) for further details
about the wavelets and discrete wavelet transform. A square-integrable function f on [0, 1]
can be expanded into a wavelet series:

f(t) =
2j0∑

k=1

θ̃j0,kφj0,k(t) +
∞∑

j=j0

2j∑

k=1

θj,kψj,k(t) (20)

where θ̃j,k = 〈f, φj,k〉, θj,k = 〈f, ψj,k〉 are the wavelet coefficients of f .

3.3 Wavelet procedures for generalized regression

We now give a detailed description of the wavelet thresholding procedures BlockJS and
NeighCoeff in this section and study the properties of the resulting estimators in Section 4.
We shall show that our estimators enjoy a high degree of adaptivity and spatial adaptivity
and are easily implementable.

Apply the discrete wavelet transform to the binned and transformed data Y ∗, and
let U = T−

1
2 WY ∗ be the empirical wavelet coefficients, where W is the discrete wavelet

transformation matrix. Write

U = (ỹj0,1, · · · , ỹj0,2j0 , yj0,1, · · · , yj0,2j0 , · · · , yJ−1,1, · · · , yJ−1,2J−1)′. (21)

Here ỹj0,k are the gross structure terms at the lowest resolution level, and yj,k (j =
j0, · · · , J−1, k = 1, · · · , 2j) are empirical wavelet coefficients at level j which represent fine
structure at scale 2j . The empirical wavelet coefficients can then be written as

yj,k = θj,k + εj,k +
1√
n

zj,k + ξj,k, (22)

where θj,k are the true wavelet coefficients of G(f), εj,k are “small” deterministic approx-
imation errors, zj,k are i.i.d. N(0, 1), and ξj,k are some “small” stochastic errors. The
theoretical calculations given in Section 6 will show that both εj,k and ξj,k are negligible.
If these negligible errors are ignored then we have

yj,k ≈ θj,k +
1√
n

zj,k, (23)

which is the idealized Gaussian sequence model with noise level σ = 1/
√

n. Both BlockJS
(Cai, 1999) and NeighCoeff (Cai and Silverman, 2001) were originally developed for this
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ideal model. Here we shall apply these methods to the empirical coefficients yj,k as if they
were observed as in (23).

We first describe the BlockJS procedure. At each resolution level j, the empirical wavelet
coefficients yj,k are grouped into nonoverlapping blocks of length L. As in the sequence
estimation setting let Bi

j = {(j, k) : (i− 1)L + 1 ≤ k ≤ iL} and let S2
j,i ≡

∑
(j,k)∈Bi

j
y2

j,k. A

modified James-Stein shrinkage rule is then applied to each block Bi
j , i.e.,

θ̂j,k =

(
1− λ∗L

nS2
j,i

)

+

yj,k for (j, k) ∈ Bi
j , (24)

where λ∗ = 4.50524 is the solution to the equation λ∗ − log λ∗ = 3 (See Cai (1999) for
details), and 1

n is approximately the variance of each yj,k. For the gross structure terms at

the lowest resolution level j0, we set ˆ̃
θj0,k = ỹj0,k. The estimate of G(f(·)) at the equally

spaced sample points { i
T : i = 1, · · · , T} is then obtained by applying the inverse discrete

wavelet transform (IDWT) to the denoised wavelet coefficients. That is, {G(f( i
T )) : i =

1, · · · , T} is estimated by Ĝ(f) = { ̂G(f( i
T )) : i = 1, · · · , T} with Ĝ(f) = T

1
2 W−1 · θ̂. The

estimate of the whole function G(f) is given by

Ĝ(f(t)) =
2j0∑

k=1

ˆ̃
θj0,kφj0,k(t) +

J−1∑

j=j0

2j∑

k=1

θ̂j,kψj,k(t).

The mean function f is estimated by

f̂BJS(t) = G−1(Ĝ(f(t))). (25)

Figure 4 shows the steps of the procedure for an example in the case of nonparametric
Gamma regression.

We now turn to the NeighCoeff procedure. This procedure, introduced in Cai and
Silverman (2001) for Gaussian regression, incorporates information about neighboring co-
efficients in a different way from the BlockJS procedure. NeighCoeff also thresholds the
empirical coefficients in blocks, but estimates wavelet coefficients individually. It chooses a
threshold for each coefficient by referencing not only to that coefficient but also to its neigh-
bors. As shown in Cai and Silverman (2001), NeighCoeff outperforms BlockJS numerically,
but with slightly inferior asymptotic properties.

Let the empirical coefficients {yj,k} be given same as before. To estimate a coefficient
θj,k at resolution level j, we form a block of size 3 by including the coefficient yj,k together
with its immediate neighbors yj,k−1 and yj,k+1. (If periodic boundary conditions are not
being used, then for the two coefficients at the boundary blocks, again of length 3, are
formed by only extending in one direction.) Estimate the coefficient θj,k by

θ̂j,k =

(
1− 2 log n

nS2
j,k

)

+

yj,k (26)
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Figure 4: An example of nonparametric Gamma regression using the mean-matching VST and

wavelet block thresholding.

where S2
j,k = y2

j,k−1 + y2
j,k + y2

j,k+1. The gross structure terms at the lowest resolution level

are again estimated by ˆ̃
θj0,k = ỹj0,k. The rest of the steps are same as before. Namely,

the inverse DWT is applied to obtain an estimate Ĝ(f) and the mean function f is then
estimated by f̂NC(t) = G−1(Ĝ(f(t))).

We can envision a sliding window of size 3 which moves one position each time and
only the middle coefficient in the center is estimated for a given window. Each individual
coefficient is thus shrunk by an amount that depends on the coefficient and on its immediate
neighbors. Note that NeighCoeff uses a lower threshold level than the universal thresholding
procedure of Donoho and Johnstone (1994). In NeighCoeff, a coefficient is estimated by
zero only when the sum of squares of the empirical coefficient and its immediate neighbors
is less than 2σ2 log n, or the average of the squares is less than 2

3σ2 log n.

16



4 Theoretical properties

In this section we investigate the asymptotic properties of the procedures proposed in
Section 3. Numerical results will be given in Section 5.

We study the theoretical properties of our procedures over the Besov spaces that are by
now standard for the analysis of wavelet regression methods. Besov spaces are a very rich
class of function spaces and contain as special cases many traditional smoothness spaces
such as Hölder and Sobolev Spaces. Roughly speaking, the Besov space Bα

p,q contains
functions having α bounded derivatives in Lp norm, the third parameter q gives a finer
gradation of smoothness. Full details of Besov spaces are given, for example, in Triebel
(1983) and DeVore and Popov (1988). A wavelet ψ is called r-regular if ψ has r vanishing
moments and r continuous derivatives. For a given r-regular mother wavelet ψ with r > α

and a fixed primary resolution level j0, the Besov sequence norm ‖ · ‖bα
p,q

of the wavelet
coefficients of a function f is then defined by

‖f‖bα
p,q

= ‖ξ
j0
‖p +




∞∑

j=j0

(2js‖θj‖p)q




1
q

(27)

where ξ
j0

is the vector of the father wavelet coefficients at the primary resolution level j0,
θj is the vector of the wavelet coefficients at level j, and s = α + 1

2 − 1
p > 0. Note that the

Besov function norm of index (α, p, q) of a function f is equivalent to the sequence norm
(27) of the wavelet coefficients of the function. See Meyer (1992). We define

Bα
p,q (M) =

{
f ; ‖f‖bα

p,q
≤ M

}
. (28)

and
Fα

p,q(M, ε, v) = {f : f ∈ Bα
p,q(M), f(t) ∈ [ε, v] for all t ∈ [0, 1]} (29)

where [ε, v] with ε < v is a compact set in the interior of the mean parameter space of the
natural exponential family.

The following theorem shows that our estimators achieve near optimal global adaptation
under integrated squared error for a wide range of Besov balls.

Theorem 2 Suppose the wavelet ψ is r-regular. Let Xi ∼ NQ(f(ti)), i = 1, ..., n, ti = i
n .

Let T = cn
3
4 . Then the estimator f̂BJS defined in (25) satisfies

sup
f∈F α

p,q(M,ε,v)
E‖f̂BJS−f‖2

2 ≤
{

Cn−
2α

1+2α p ≥ 2, α ≤ r, and 3
2(α− 1

p) > 2α
1+2α

Cn−
2α

1+2α (log n)
2−p

p(1+2α) 1 ≤ p < 2, α ≤ r, and 3
2(α− 1

p) > 2α
1+2α

and the estimator f̂NC satisfies

sup
f∈F α

p,q(M,ε,v)
E‖f̂NC − f‖2

2 ≤ C

(
log n

n

) 2α
1+2α

p ≥ 1, α ≤ r, and
3
2
(α− 1

p
) >

2α

1 + 2α
.
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Remark 4 Note that when f(t) ∈ [ε, v], the condition f ∈ Bα
p,q(M) implies that there

exists M ′ > 0 such that G (f) ∈ Bα
p,q (M ′) with

M ′ = c0 + cM



bαc+1∑

l=1

clv
l−1 + cbαc+1


 , for some c > 0

where cl = supy∈[ε,v]

∣∣G(l) (y)
∣∣ with l = 0, . . . , bαc + 1, since it follows from Theorem 3 on

page 344 and Remark 3 on page 345 of Runst (1986) that

‖G (f) ‖Bα
p,q
≤ ‖G (f) ‖p + c‖f‖Bα

p,q



bαc+1∑

l=1

∥∥∥G(l) (f)
∥∥∥
∞
‖f‖l−1

∞ +
∥∥∥Gbαc+1 (f)

∥∥∥
∞


 .

Remark 5 Simple algebra shows that 3
2(α− 1

p) > 2α
1+2α is equivalent to 2α2−α/3

1+2α > 1
p . This

condition is needed to ensure that the discretization error over the Besov ball Bα
p,q(M) is

negligible relative to the minimax risk. See Section 4.2 for more discussions.

For functions of spatial inhomogeneity, the local smoothness of the functions varies
significantly from point to point and global risk given in Theorem 2 cannot wholly reflect
the performance of estimators at a point. We use the local risk measure

R(f̂(t0), f(t0)) = E(f̂(t0)− f(t0))2 (30)

for spatial adaptivity.
The local smoothness of a function can be measured by its local Hölder smoothness

index. For a fixed point t0 ∈ (0, 1) and 0 < α ≤ 1, define the local Hölder class Λα(M, t0, δ)
as follows:

Λα(M, t0, δ) = {f : |f(t)− f(t0)| ≤ M |t− t0|α, for t ∈ (t0 − δ, t0 + δ)}.
If α > 1, then

Λα(M, t0, δ) = {f : |f (bαc)(t)− f (bαc)(t0)| ≤ M |t− t0|α′ for t ∈ (t0 − δ, t0 + δ)}
where bαc is the largest integer less than α and α′ = α− bαc. Define

Fα(M, t0, δ, ε, v) = {f : f ∈ Λα(M, t0, δ), f(x) ∈ [ε, v] for all x ∈ [0, 1]}.
In Gaussian nonparametric regression setting, it is a well known fact that for estimation

at a point, one must pay a price for adaptation. The optimal rate of convergence for
estimating f(t0) over function class Λα(M, t0, δ) with α completely known is n−2α/(1+2α).
Lepski (1990) and Brown and Low (1996) showed that one has to pay a price for adaptation
of at least a logarithmic factor. It is shown that the local adaptive minimax rate over the
Hölder class Λα(M, t0, δ) is (log n/n)2α/(1+2α).

The following theorem shows that our estimators achieve optimal local adaptation with
the minimal cost.
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Theorem 3 Suppose the wavelet ψ is r-regular with 1/6 < α ≤ r. Let t0 ∈ (0, 1) be fixed.
Let Xi ∼ NQ(f(ti)), i = 1, ..., n, ti = i

n . Let T = cn
3
4 . Then for f̂ = f̂BJS or f̂NC

sup
F α(M,t0,δ,ε,v)

E(f̂(t0)− f(t0))2 ≤ C · ( log n

n
)

2α
1+2α . (31)

Theorem 3 shows that both estimators are spatially adaptive, without prior knowledge
of the smoothness of the underlying functions.

4.1 Regression in general natural exponential families

We have so far focused on the nonparametric regression in the NEF-QVF families. Our
method can be extended to the nonparametric regression in the general one-parameter
natural exponential families where the variance is no longer a quadratic function of the
mean.

Suppose we observe

Yi
ind.∼ NEF (f(ti)), i = 1, ..., n, ti =

i

n
(32)

and wish to estimate the mean function f(t). When the variance is not a quadratic function
of the mean, the VST still exists, although the mean-matching VST does not. In this case,
we set a = b = 0 in (3) and define Hm as

Hm(X) = G(
X

m
). (33)

We then apply the same four-step procedure, Binning-VST-Gaussian Regression-Inverse
VST, as outlined in Section 3 where either BlockJS or NeighCoeff is used in the third step.
Denote the resulting estimator by f̂BJS and f̂NC respectively.

The following theorem is an extension of Theorem 1 to the general one-parameter natural
exponential families where the standard VST is used.

Theorem 4 Let f ∈ F d(M, ε, v). Then Y ∗
j = G(Qj

m ) can be written as

Y ∗
j = G(f(

j

T
)) + εj + m− 1

2 Zj + ξj , j = 1, 2, . . . , T, (34)

where Zj
i.i.d.∼ N(0, 1), εj are constants satisfying |εj | ≤ c

(
m−1 + T−d

)
and consequently

for some constant C > 0
1
T

T∑

j=1

ε2j ≤ C
(
m−2 + T−2d

)
, (35)

and ξj are independent and “stochastically small” random variables satisfying that for any
integer k > 0 and any constant a > 0

E|ξj |k ≤ Ck log2k m·(m−k+T−dk) and P(|ξj | > a) ≤ Ck log2k m·(m−k+T−dk)a−k (36)

where Ck > 0 is a constant depending only on k, d and M .
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The proof of Theorem 4 is similar to that of Theorem 1. Note that the bound for the
deterministic error in (35) is different from the one given in equation (18). This difference
affects the choice of the bin size.

Theorem 5 Suppose the wavelet ψ is r-regular. Let Xi ∼ NEF (f(ti)), i = 1, ..., n, ti = i
n .

Let T = cn
1
2 . Then the estimator f̂BJS satisfies

sup
f∈F α

p,q(M,ε,v)
E‖f̂BJS−f‖2

2 ≤
{

Cn−
2α

1+2α p ≥ 2, α ≤ r, and (α− 1
p) > 2α

1+2α

Cn−
2α

1+2α (log n)
2−p

p(1+2α) 1 ≤ p < 2, α ≤ r, and (α− 1
p) > 2α

1+2α

and the estimator f̂NC satisfies

sup
f∈F α

p,q(M,ε,v)
E‖f̂NC − f‖2

2 ≤ C

(
log n

n

) 2α
1+2α

p ≥ 1, α ≤ r, and (α− 1
p
) >

2α

1 + 2α
.

Remark 6 Note that the number of bins here is T = O(n
1
2 ). This gives a larger bin size

than that needed with NEF-QVF. Because the VST yields higher bias than the mean-
matching VST in the case of NEF-QVF, it is necessary to use larger bins. The condition
(α− 1

p) > 2α
1+2α is also stronger than the condition 3

2(α− 1
p) > 2α

1+2α which is needed in the
case of NEF-QVF. The functions are required to be smoother than before. This is due to
the fact that both the approximation error and the discretization error are larger in this
case. See Section 4.2 for more discussions.

We have the following result on spatial adaptivity.

Theorem 6 Suppose the wavelet ψ is r-regular with 1
2 < α ≤ r. Let t0 ∈ (0, 1) be fixed.

Let Xi ∼ NEF (f(ti)), i = 1, ..., n, ti = i
n . Let T = cn

1
2 . Then for f̂ = f̂BJS or f̂NC

sup
f∈F α(M,t0,δ,ε,v)

E(f̂(t0)− f(t0))2 ≤ C(
log n

n
)

2α
1+2α . (37)

Remark 7 In Remark 1 we noted that some non-exponential families admit mean-matching
variance stabilizing transformations. Although we do not pursue the issue in the current
paper, we believe that analogs of our procedure can be developed for these families and the
basic results in Theorems 2 and 3 can be extended to such situations. A different possibility
is that the error distributions lie in a one parameter family that admits a VST that is not
mean matching. In that case one could expect analogs of Theorems 5 and 6 to be valid.

4.2 Discussion

Our procedure begins with binning. This step makes the data more “normal” and at the
same time reduces the number of observations from n to T . This step in general does
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not affect the rate of convergence as long as the underlying function has certain minimum
smoothness so that the bias induced by local averaging is negligible relative to the minimax
estimation risk. While the number of observations is reduced by binning, the noise level is
also reduced accordingly.

An important quantity in our method is the value of T , the number of bins, or equiva-
lently the value of the bin size m. The choice of T = cn3/4 for the NEF-QVF and T = cn1/2

for the general NEF are determined by the bounds for the approximation error, the dis-
cretization error, and the stochastic error. For functions in the Besov ball Bα

p,q(M), the
discretization error between the sampled function {G(f(j/T )) : j = 1, ..., T} and the whole
function G(f(t)) can be bounded by CT−2d where d = (α− 1

p)∧ 1 (see Lemma 8 in Section
6.3). The approximation error 1

T

∑T
i=1 ε2i can be bounded by C(m−4 + T−2d) as in (18).

In order to adaptively achieve the optimal rate of convergence, these deterministic errors
need to be negligible relative to the minimax rate of convergence n−

2α
1+2α for all α under

consideration. That is, we need to have m−4 = o(n−
2α

1+2α ) and T−2d = o(n−
2α

1+2α ). These
conditions put constraints on both m and α (and p). We choose m = cn

1
4 (or equivalently

T = cn
3
4 ) to ensure that the approximation error is always negligible for all α. This choice

also guarantees that the stochastic error is under control. With this choice of m, we then
need 3

2(α− 1
p) > 2α

1+2α or equivalently 2α2−α/3
1+2α > 1

p .
In the natural exponential family with a quadratic variance function, the existence of a

mean-matching VST makes the approximation error small and this provides advantage over
more general natural exponential families. For general NEF without a quadratic variance
function, the approximation error 1

T

∑T
i=1 ε2i is of order m−2 +T−2d instead of m−4 +T−2d.

Making it negligible for all α under consideration requires m = cn
1
2 . With this choice of m,

we require α − 1
p > 2α

1+2α or equivalently 2α2−α
1+2α > 1

p in order to control the discretization
error. In particular, this condition is satisfied if α ≥ 1 + 1

p .
In this paper we present a unified approach to nonparametric regression in the natural

exponential families and the optimality results are given for Besov spaces. As mentioned in
the introduction, a wavelet shrinkage and modulation method was introduced in Antoniadis
and Sapatinas (2001) for regression in the NEF-QVF and it was shown that the estimator
attains the optimal rate over the classical Sobolev spaces with the smoothness index α >

1/2. In comparison to the results given in Antoniadis and Sapatinas (2001), our results are
more general in terms of the function spaces as well as the natural exponential families. On
the other hand, we require slightly stronger conditions on the smoothness of the underlying
functions. It is intuitively clear that through binning and VST a certain amount of bias is
introduced. The conditions 3

2(α − 1
p) > 2α

1+2α in the case of NEF-QVF and α − 1
p > 2α

1+2α

in the general case are the minimum smoothness condition needed to ensure that the bias
is under control. The bias in the general NEF case is larger and therefore the required
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smoothness condition is stronger.

5 Numerical study

In this section we study the numerical performance of our estimators. The procedures
introduced in Section 3 are easily implementable. We shall first consider simulation results
and then apply one of our procedures in the analysis of two real data sets.

5.1 Simulation results

As discussed the Section 2, there are several different versions of the VST in the literature
and we have emphasized the importance of using the mean-matching VST for theoretical
reasons. We shall now consider the effect of the choice of the VST on the numerical perfor-
mance of the resulting estimator. To save space we only consider the Poisson and Bernoulli
cases. We shall compare the numerical performance of the mean-matching VST with those
of classical transformations by Bartlett (1936) and Anscombe (1948) using simulations.
The transformation formulae are given as follows. (In the following tables and figures, we
shall use MM for mean-matching.)

MM Bartlett Anscombe

Poi(λ)
√

X + 1/4
√

X
√

X + 3/8

Bin(m, p) sin−1
√

X+1/4
m+1/2 sin−1

√
X
m sin−1

√
X+3/8
m+3/4

.

Four standard test functions, Doppler, Bumps, Blocks and HeaviSine, representing dif-
ferent level of spatial variability are used for the comparison of the three VSTs. See Donoho
and Johnstone (1994) for the formulae of the four test functions. These test functions are
suitably normalized so that they are positive and taking values between 0 and 1 (in the
binomial case). Sample sizes vary from a few hundred to a few hundred thousand. We
use Daubechies’ compactly supported wavelet Symmlet 8 for wavelet transformation. As
is the case in general, it is possible to obtain better estimates with different wavelets for
different signals. But for uniformity, we use the same wavelet for all cases. Although our
asymptotic theory only gives a justification for the choice of the bin size of order n1/4 due
to technical reasons, our extensive numerical studies have shown that the procedure works
well when the number of counts in each bin is between 5 and 10 for the Poisson case, and
similarly for the Bernoulli case the average number of successes and failures in each bin is
between 5 and 10. We follow this guideline in our simulation study. Table 1 reports the
average squared errors over 100 replications for the BlockJS thresholding. The sample sizes
are 1280, 5120, ..., 327680 for the Bernoulli case and 640, 2560, ..., 163840 for the Poisson
case. A graphical presentation is given in Figure 5.
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Bernoulli MM Bartlett Anscombe MM Bartlett Anscombe
Doppler

1280
5120

20480
81920

327680

12.117
3.767
1.282
0.447
0.116

11.197
3.593
1.556
0.772
0.528

12.673
4.110
1.417
0.540
0.169

Bumps
1280
5120

20480
81920

327680

7.756
7.455
3.073
1.203
0.331

8.631
7.733
3.476
1.953
1.312

7.896
7.768
3.450
1.485
0.535

Blocks
1280
5120

20480
81920

327680

18.451
7.582
3.288
1.580
0.594

17.171
6.911
3.072
1.587
0.781

18.875
7.996
3.545
1.737
0.681

HeaviSine
1280
5120

20480
81920

327680

2.129
0.842
0.549
0.285
0.138

2.966
1.422
0.992
0.681
0.532

2.083
0.860
0.603
0.339
0.195

Poisson MM Bartlett Anscombe MM Bartlett Anscombe
Doppler

640
2560

10240
40960

163840

8.101
3.066
1.069
0.415
0.108

8.282
3.352
1.426
0.743
0.461

8.205
3.160
1.146
0.502
0.190

Bumps
640

2560
10240
40960

163840

107.860
70.034
24.427
9.427
3.004

103.696
68.616
24.268
9.469
3.098

109.023
70.495
24.653
9.620
3.204

Blocks
640

2560
10240
40960

163840

12.219
5.687
2.955
1.424
0.508

12.250
6.209
3.363
1.773
0.890

12.320
5.724
3.005
1.495
0.573

HeaviSine
640

2560
10240
40960

163840

2.831
0.849
0.425
0.213
0.118

3.552
1.468
0.852
0.560
0.455

2.851
0.884
0.501
0.298
0.206

Table 1: Mean squared error (MSE) from 100 replications. The MSE is in units of 10−3 for
Bernoulli case and 10−2 for Poisson case.
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Figure 5: Left panels: The vertical bars represent the ratios of the MSE of the estimator using

the Bartlett VST to the corresponding MSE of our estimator using the mean-matching VST. Right

Panels: The bars represent the ratios of the MSE of the estimator using the Anscombe VST to the

corresponding MSE of the estimator using the mean-matching VST. The higher the bar the better

the relative performance of our estimator. The bars are plotted on a log scale and the original ratios

are truncated at the value 3 for the Bartlett VST and at 2 for the Anscombe VST. For each signal

the bars are ordered from left to right in the order of increasing sample size. The top row is for the

Bernoulli case and the bottom row for the Poisson case.

Table 1 compares the performance of three nonparametric function estimators con-
structed from three VSTs and wavelet BlockJS thresholding for Bernoulli and Poisson
regressions. The three VSTs are the mean-matching, Bartlett and Anscombe transforma-
tions given above. The results show the mean-matching VST outperforms the classical
transformations for nonparametric estimation in most cases. The improvement becomes
more significant as the sample size increases.

In the Poisson regression, the mean-matching VST outperforms the Bartlett VST in 17
out of 20 cases and uniformly outperforms the Anscombe VST in all 20 cases. The case of
Bernoulli regression is similar: the mean-matching VST is better than the Bartlett VST in
15 out of 20 cases and better than the Anscombe VST in 19 out of 20 cases. Although the
mean-matching VST does not uniformly dominate either the Bartlett VST or the Anscombe
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VST, the improvement of the mean-matching VST over the other two VSTs is significant
as the sample size increases for all four test functions. The simulation results show that
mean-matching VST yields good numerical results in comparison to other VSTs. These
numerical findings is consistent with the theoretical results given in Section 4 which show
that the estimator constructed from the mean-matching VST enjoys desirable adaptivity
properties.

Table 2 reports the average squared errors over 100 replications for the NeighCoeff
procedure in the same setting as those in Table 1. In comparison to BlockJS, the numerical
performance of NeighCoeff is overall slightly better. Among the three VSTs, the mean-
matching VST again outperforms both the Anscombe VST and Bartlett VST.

Bernoulli MM Bartlett Anscombe MM Bartlett Anscombe
Doppler

1280
5120

20480
81920

327680

8.574
2.935
1.029
0.377
0.138

8.569
3.211
1.380
0.800
0.556

8.959
3.129
1.143
0.438
0.186

Bumps
1280
5120

20480
81920

327680

7.085
6.810
2.846
0.958
0.264

7.741
7.052
3.364
1.789
1.274

7.361
7.180
3.204
1.220
0.458

Blocks
1280
5120

20480
81920

327680

14.838
7.129
3.131
1.266
0.469

13.964
6.615
2.904
1.350
0.680

15.336
7.511
3.388
1.400
0.553

HeaviSine
1280
5120

20480
81920

327680

2.072
0.822
0.529
0.235
0.102

3.092
1.479
1.007
0.660
0.512

2.010
0.841
0.580
0.286
0.156

Poisson MM Bartlett Anscombe MM Bartlett Anscombe
Doppler

640
2560

10240
40960

163840

7.789
3.112
1.006
0.402
0.106

8.030
3.398
1.362
0.731
0.460

7.888
3.200
1.081
0.488
0.187

Bumps
640

2560
10240
40960

163840

105.624
69.627
24.448
9.312
3.005

101.486
68.175
24.304
9.341
3.102

106.76
70.105
24.672
9.507
3.203

Blocks
640

2560
10240
40960

163840

12.301
5.719
2.985
1.399
0.504

12.141
6.229
3.363
1.755
0.877

12.412
5.758
3.046
1.469
0.572

HeaviSine
640

2560
10240
40960

163840

2.679
0.903
0.429
0.215
0.120

3.465
1.427
0.852
0.562
0.453

2.672
0.977
0.505
0.300
0.209

Table 2: Mean squared error (MSE) from 100 replications for the NeighCoeff thresholding.
The MSE is in units of 10−3 for Bernoulli case and 10−2 for Poisson case.
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We have so far considered the effect of the choice of VST on the performance of the
estimator. We now discuss the Poisson case in more detail and compare the numerical per-
formance of our procedure with other estimators proposed in the literature. As mentioned
in the introduction, Besbeas, De Feis and Sapatinas(2004) carried out an extensive simula-
tion studies comparing several nonparametric Poisson regression estimators including the
estimator given in Donoho (1993). The estimator in Donoho (1993) was constructed by
first applying the Anscombe (1948) VST to the binned data and by then using a wavelet
procedure with a global threshold such as VisuShrink (Donoho and Johnstone (1994)) to
the transformed data as if the data were actually Gaussian. Figure 6 plots the ratios of
the MSE of Donoho’s estimator to the corresponding MSE of our estimator. The results
show that our estimator outperforms Donoho’s estimator in all but one case and in many
cases our estimator has the MSE less than one half and sometimes even one third of that
of Donoho’s estimator.

.9   

1   

1.7   

3+   

Doppler Bumps Blocks HeaviSine

Figure 6: The vertical bars represent the ratios of the MSE of Donoho’s estimator to the corre-

sponding MSE of our estimator. The higher the bar the better the relative performance of our

estimator. The bars are plotted on a log scale and the original ratios are truncated at the value 3.

For each signal the bars are ordered from left to right in the order of increasing sample size.

Besbeas, De Feis and Sapatinas (2004) plotted simulation results of 27 procedures for
six intensity functions (Smooth, Angles, Clipped Blocks, Bumps, Spikes and Bursts) with
sample size 512 under the squared root of mean squared error (RMSE). We apply NeighCoeff
and BlockJS procedures to data with exactly the same intensity functions. The following
table reports the RMSE of NeighCoeff and BlockJS procedures based on 100 replications:
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Smooth Angles Clipped Blocks Bumps Spikes Bursts
NeighCoeff 1.773 2.249 5.651 4.653 2.096 2.591
BlockJS 1.760 2.240 6.492 5.454 2.315 2.853

We compare our results with the plots of RMSE for 27 methods in Besbeas, De Feis and
Sapatinas (2004). The NeighCoeff procedure dominates all 27 methods for signals Smooth
and Spikes, outperforms most of procedures for signals Angles and Bursts, and performs
slightly worse than average for signals Clipped Blocks and Bumps. The BlockJS procedure
is comparable with the NeighCoeff procedure except for two signals Clipped Blocks and
Bumps. We should note that an exact numerical comparison here is difficult as the results
in Besbeas, de Feis and Sapatinas (2004) were given in plots, not numerical values.

5.2 Real data applications

We now demonstrate our estimation method in the analysis of two real data sets, a gamma-
ray burst data set (GRBs) and a packet loss data set. These two data sets have been
discussed in Kolaczyk and Nowak (2005).

Cosmic gamma-ray bursts were first discovered in the late 1960s. In 1991, NASA
launched the Compton Gamma Ray Observatory and its Burst and Transient Source Ex-
plorer (BATSE) instrument, a sensitive gamma-ray detector. Much burst data has been
collected since then, followed by extensive studies and many important scientific discover-
ies during the past few decades, however the source of GRBs remains unknown (Kaneko,
2005). For more details see the NASA website http://www.batse.msfc.nasa.gov/batse/.
GRBs seem to be connected to massive stars and become powerful probes of the star for-
mation history of the universe. However not many redshifts are known and there is still
much work to be done to determine the mechanisms that produce these enigmatic events.
Statistical methods for temporal studies are necessary to characterize their properties and
hence to identify the physical properties of the emission mechanism. One of the difficul-
ties in analyzing the time profiles of GRBs is the transient nature of GRBs which means
that the usual assumptions for Fourier transform techniques do not hold (Quilligan et al.
(2001)). We may model the time series data by an inhomogeneous Poisson process, and
apply our wavelet procedure. The data set we use is called BATSE 551 with the sample
size 7808. In Figure 7, the top panel is the histogram of the data with 1024 bins such that
the number of observations in each bin would be between 5 and 10. In fact we have on
average 7.6 observations. The middle panel is the estimate of the intensity function using
our procedure. If we double the width of each bin, i.e., the total number of bins is now 512,
the new estimator in the bottom panel is noticeably different from previous one since it
does not capture the fine structure from time 200 to 300. The study of the number of pulses
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in GRBs and their time structure is important to provide evidence for rotation powered
systems with intense magnetic fields and the added complexity of a jet.
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Figure 7: Gamma-ray burst. Histogram of BATSE 551 with 1024 bins (top panel); Estimator

based on 1024 bin (middle panel); Estimator with 512 bins (bottom panel).

Packet loss describes an error condition in internet traffic in which data packets appear
to be transmitted correctly at one end of a connection, but never arrive at the other. So, if
10 packets were sent out, but only 8 made it through, then there would be 20% overall packet
loss. The following data were originally collected and analyzed by Yajnik et al. (1999).
The objective is to understand packet loss by modeling. It measures the reliability of a
connection and is of fundamental importance in network applications such as audio/video
conferencing and Internet telephony. Understanding the loss seen by such applications is
important in their design and performance analysis. The measurements are of loss as seen
by packet probes sent at regular time intervals. The packets were transmitted from the
University of Massachusetts at Amherst to the Swedish Institute of Computer Science.
The records note whether each packet arrived or was lost. It is a Bernoulli time series, and
can be naturally modeled as Binomial after binning the data. The following figure gives
the histogram and our corresponding estimator. The average sum of failures in each bin is
about 10. The estimator in Kolaczyk and Nowak (2005) is comparable to ours. But our

28



procedure is more easily implemented.

0 500 1000 1500 2000

0.0
0.0

5
0.1

0
0.1

5
0.2

0

0 500 1000 1500 2000

0.0
0.0

5
0.1

0
0.1

5
0.2

0

Figure 8: Packet loss data. Histogram with 2048 bins (top panel); Estimator based on the binned

data (bottom panel).

6 Proofs

In this section we give proofs for Theorems 1, 2 and 5. Theorems 3 and 6 can be proved in
a similar way as Theorem 4 in Brown, Cai and Zhou (2008) by applying Proposition 1 in
Section 6.3. We begin by proving Lemmas 1 and 3 as well as an additional technical result,
Lemma 4. These results are needed to establish Theorem 1 in which an approximation
bound between our model and a Gaussian regression model is given explicitly. Finally we
apply Theorem 1 and risk bounds for block thresholding estimators in Proposition 1 to
prove Theorems 2 and 5.

6.1 Proof of preparatory technical results

Proof of Lemma 1: We only prove equation (4), the first part of the lemma. The proof for
equation (5), the second part, is similar and simpler. By Taylor expansion we write

G

(
X + a

m + b

)
−G (µ(η)) = T1 + T2 + T3 + T4
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where

T1 = G′ (µ(η))
(

X + a

m + b
− µ(η)

)
, T2 =

1
2
G′′ (µ(η))

(
X + a

m + b
− µ(η)

)2

T3 =
1
6
G′′′ (µ(η))

(
X + a

m + b
− µ(η)

)3

, T4 =
1
24

G(4) (µ∗)
(

X + a

m + b
− µ(η)

)4

and µ∗ is in between X+a
m+b and µ(η). By definition, G′ (µ(η)) = I (η)−1/2 with I (η) = µ′ (η)

which is also V (µ (η)) in equation (2), then

G′′ (µ(η))µ′ (η) = −1
2
I (η)−3/2 I ′ (η)

i.e.,

G′′ (µ(η)) = −1
2
I (η)−5/2 I ′ (η)

then

ET1 = I (η)−1/2 a− µ(η)b
m + b

ET2 = −1
4
I (η)−5/2 Í (η)

[(
a− µ(η)b

m + b

)2

+
mI (η)

(m + b)2

]
.

Note that Ǵ́ (µ(η)) is uniformly bounded on Θ by the assumption in the lemma, then we
have

E (T1 + T2) =
m

(m + b)2 I (η)1/2

(
a− µ(η)b− µ′′ (η)

4µ′ (η)

)
+ O

(
1

m2

)

=
1

mI (η)1/2

(
a− µ(η)b− µ′′ (η)

4µ′ (η)

)
+ O

(
1

m2

)
. (38)

It is easy to show that

|ET3| =
∣∣∣∣∣
1
6
G′′′ (µ(η))E

(
X + a

m + b
− µ(η)

)3
∣∣∣∣∣ = O

(
1

m2

)
, (39)

since
∣∣∣E (X/m− µ(η))3

∣∣∣ = O
(

1
m2

)
. For any ε > 0 it is known that P

{∣∣∣X+a
m+b − µ (η)

∣∣∣ > ε
}
≤

P {|X/m− µ (η)| > ε/2} which decays exponentially fast as m → ∞ (See, e.g. Petrov
(1975)). This implies µ∗ is in the interior of the natural parameter space and then G(4) (µ∗)
is bounded with probability approaching to 1 exponentially fast. Thus we have

|ET4| ≤ CE
(

X + a

m + b
− µ(η)

)4

= O

(
1

m2

)
. (40)

Equation (4) then follows immediately by combining equations (38)-(40).
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Proof of Lemma 2: The proof is similar to Corollary 1 of Zhou (2006). Let X̃ = X−mµ√
mV

. It
is shown in Komlós, Major and Tusnády (1975) that there exists a standard normal random
variable Z ∼ N(0, 1) and constants ε, c4 > 0 not depending on m such that whenever the
event A = {|X̃| ≤ ε

√
m} occurs,

|X̃ − Z| < c4√
m

+
c4√
m

X̃2. (41)

Obviously the inequality (41) still holds, when
∣∣∣X̃

∣∣∣ ≤ ε1
√

m for 0 < ε1 ≤ ε. Let’s choose ε1

small enough such that c4ε
2
1 < 1/2. When

∣∣∣X̃
∣∣∣ ≤ ε1

√
m, we have

∣∣∣X̃ − Z
∣∣∣ ≤ c4√

m
+ 1

2

∣∣∣X̃
∣∣∣from

(41), which implies
∣∣∣X̃

∣∣∣−|Z| ≤ c4√
m

+ 1
2

∣∣∣X̃
∣∣∣ by the triangle inequality, i.e.,

∣∣∣X̃
∣∣∣ ≤ 2c4√

m
+2 |Z|,

so we have ∣∣∣X̃ − Z
∣∣∣ ≤ c4√

m
+

c4√
m

(
2c4√
m

+ 2 |Z|
)2

≤ c2Z
2 + c3.

for some constants c1, c2 > 0.

Proof of Lemma 3: By Taylor expansion we write

G

(
X + a

m + b

)
−G (µ) = G′ (µ)

(
X + a

m + b
− µ

)
+

1
2
G′′ (µ∗)

(
X + a

m + b
− µ

)2

.

Recall that |ε| =
∣∣∣EG

(
X+a
m+b

)
−G(µ)

∣∣∣ = O(m−2) from Lemma 1, and Z is a standard
normal variable satisfying (13), and

ξ = G(
X + a

m + b
)−G(µ)− ε−m− 1

2 Z. (42)

We write ξ = ξ1 + ξ2 + ξ3, where

ξ1 = G′ (µ)
(

X + a

m + b
− X

m

)
− ε = G′ (µ)

am− bX

m(m + b)
− ε

ξ2 = G′ (µ)

(
X

m
− µ−

√
V

m
Z

)
=

G′ (µ)
m

(
X −mµ−

√
mV Z

)

ξ3 =
1
2
G′′ (µ∗)

(
X + a

m + b
− µ

)2

=
1
2
G′′ (µ∗)

(
X −mµ

m + b
+

a− bµ

m + b

)2

It is easy to see that E|ξ1|k ≤ Ckm
−k. Since P{|X−mµ| ≥ c1m} is exponentially small (cf.

Komlós, Major and Tusnády (1975)), an application of Lemma 2 implies E|ξ2|k ≤ Ckm
−k.

Note that on the event {|X − mµ| ≤ c1m}, G′′ (µ∗) is bounded for m sufficiently large,
then E|ξ3|k ≤ Ckm

−k by observing that E [(X −mµ) /
√

m]2k ≤ C ′
k. The inequality E|ξ|k ≤

Ckm
−k then follows immediately by combining the moments bounds for ξ1, ξ2 and ξ3. The

second bound in (16) is a direct consequence of the first one and Markov inequality.
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The variance stabilizing transformation considered in Section 2 is for i.i.d. observations.
In the function estimation procedure, observations in each bin are independent but not
identically distributed. However, observations in each bin can be treated as i.i.d. random
variables through coupling. Let Xi ∼ NQ(µi), i = 1, ...,m, be independent. Here the
means µi are “close” but not equal. Let Xi,c be a set of i.i.d. random variables with Xi,c

∼ NQ(µc). We define

D = G

(∑m
i=1 Xi + a

m + b

)
−G

(∑m
i=1 Xi,c + a

m + b

)
.

If µc = maxi µi, it is easy to see ED ≤ 0 since Xi,c is stochastically larger than Xi for all
i (See, e.g., Lehmann and Romano (2005)). Similarly ED ≥ 0 when µc = mini µi. We will
select a

µ∗c ∈
[
min

i
µi, max

i
µi

]
(43)

such that ED = 0, which is possible by the intermediate value theorem. In the following
lemma we construct i.i.d. random variables Xi,c ∼ NQ(µ∗c) on the sample space of Xi such
that D is very small and has negligible contribution to the final risk bounds in Theorems
2 and 3.

Lemma 4 Let Xi ∼ NQ(µi), i = 1, ..., m, be independent with µi ∈ [ε, v], a compact subset
in the interior of the mean parameter space of the natural exponential family. Assume that
|mini µi −maxi µi| ≤ Cδ. Then there are i.i.d. random variables Xi,c where Xi,c ∼ NQ(µ∗c)
with µ∗c ∈ [mini µi, maxi µi] such that ED = 0 and

(i)
P ({Xi 6= Xi,c}) ≤ Cδ, (44)

(ii) and for any fixed integer k ≥ 1 there exists a constant Ck > 0 such that for all a > 0,

E|D|k ≤ Ck log2k m ·
(
m−k + δ−k

)
and P(|D| > a) ≤ Ck

log2k m

ak
(m−k + δ−k). (45)

Proof of Lemma 4: (i). There is a classical coupling identity for the Total variation distance.
Let P and Q be distributions of two random variables X and Y on the same sample space
respectively, then there is a random variable Yc with distribution Q such that P (X 6= Yc ) =
|P −Q|TV . See, for example, page 256 in Pollard (2002). The proof for the inequality (44)
follows from that identity and the inequality that |NQ(µi)−NQ(µ∗c)|TV ≤ C |µi − µ∗c | for
some C > 0 which only depends on the family of the distribution of Xi and [ε, v].

(ii). Using Taylor expansion we can rewrite D as D = G′ (ζ)
∑m

i=1(Xi−Xi,c)
m+b for some ζ

in between
∑m

i=1 Xi+a
m+b and

∑m
i=1 Xi,c+a

m+b . Since the distribution Xi is in exponential family,
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then P
(
maxi |Xi −Xi,c| > log2 m

) ≤ Ck′m
−k′ for all k′ > 0 , which implies E |Xi −Xi,c|k ≤

Ckδ log2k m fo all positive integer k. Since Xi−Xi,c are independent, it can be shown that

E

(
1
m

m∑

i=1

|Xi −Xi,c|
)k

≤ 1
mk

∑

k1+···+km=k

(
k

k1, ..., km

)
E |X1 −X1,c|k1

1 · · ·E |Xm −Xm,c|km

m

=
1

mk

k∑

j=1

∑

k1+···+km=k,
Card{i,ki≥1}=j

(
k

k1, ..., km

)
E |X1 −X1,c|k1

1 · · ·E |Xm −Xm,c|km

m

≤ Ck
log2k m

mk

k∑

j=1

δj · Card {(k1, . . . , km) : k1 + · · ·+ km = k, Card {i, ki ≥ 1} = j}

≤ C ′
k

log2k m

mk




k∑

j=1

mjδj


 = C ′

k log2k m




k∑

j=1

mj−kδj




where the last inequality follows from the facts that k is fixed and finite and

Card {(k1, . . . , km) : k1 + · · ·+ km = k, Card {i, ki ≥ 1} = j}
=

(
m

j

)
Card {(k1, . . . , kj) : k1 + · · ·+ kj = k, ki ≥ 1}

≤
(

m

j

)
kk ≤ mjkk.

Note that m−k+δk

mj−kδj = 1
(mδ)j + (mδ)k−j ≥ 1 for all k ≥ j ≥ 1, then

E

(
1
m

m∑

i=1

|Xi −Xi,c|
)k

≤ C ′′
k log2k m ·

(
m−k + δk

)
.

Thus the first inequality in (45) follows immediately by observing that G′ (ζ) is bounded
with a probability approaching to 1 exponentially fast. The second bound is an immediate
consequence of the first one and Markov inequality.

Remark 8 The unknown function f in a Besov ball Bα
p,q(M) has Hölder smoothness d =

min(α − 1
p , 1), then δ in Lemma 4 can be chosen to be T−d. The standard deviation of

normal noise in equation (17) is 1/
√

m. From the assumptions in Theorems 2 or 3 we see
m1/2T−d log2 m converges to 0 as a power of n, then

P(|D| > 1/
√

m) ≤ Ck

[(
m−1/2 log2 m

)
m−k +

(√
mT−d log2 m

)k
]

for all k ≥ 1

which converges to 0 faster than any polynomial of m. This implies the contribution of D

to the final risk bounds in all major Theorems is negligible as shown in later sections.
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6.2 Proof of Theorem 1

From Lemma 4, there exist Y ∗
j,c where Xi,c ∼ NQ(f∗j ) with

f∗j,c ∈
[

min
jm+1≤i≤(j+1)m

f

(
i

n

)
, max
jm+1≤i≤(j+1)m

f

(
i

n

)]

as in equation (43) such that

E
[
Y ∗

j − Y ∗
j,c

]
= 0 (46)

E|Y ∗
j − Y ∗

j,c|k ≤ Ck log2k m ·
(
m−k + T−dk

)
(47)

P(|Y ∗
j − Y ∗

j,c| > a) ≤ Ck
log2k m

ak

(
m−k + T−dk

)
. (48)

Lemmas 1, 2, and 3 together yield

Y ∗
j,c = G(f∗j,c) + εj + m− 1

2 Zj + ξj , j = 1, 2, . . . , T, (49)

and
|εj | ≤ Cm−2, E|ξj |k ≤ Ckm

−k, and P(|ξj | > a) ≤ Ck (am)−k . (50)

Note that ∣∣∣∣G(f∗j,c)−G

(
f(

j

T
)
)∣∣∣∣ ≤ CT−d. (51)

Theorem 1 then follows immediately by combining equations (46) – (51).

6.3 Risk bound for wavelet thresholding

We collect here a few technical results that are useful for the proof of the main theorems.
We begin with the following moment bounds for an orthogonal transform of independent
variables. See Brown, Cai, Zhang, Zhao and Zhou (2008) for a proof.

Lemma 5 Let X1, . . . , Xn be independent variables with E(Xi) = 0 for i = 1, . . . , n. Sup-
pose that E|Xi|k < Mk for all i and all k > 0 with Mk > 0 some constant not depending
on n. Let Y = WX be an orthogonal transform of X = (X1, ..., Xn)′. Then there exist
constants M ′

k not depending on n such that E|Yi|k < M ′
k for all i = 1, . . . , n and all k > 0.

Lemma 6 below provides an oracle inequality for block thresholding estimators without
the normality assumption.

Lemma 6 Suppose yi = θi + zi, i = 1, ..., L, where θi are constants and zi are random
variables. Let S2 =

∑L
i=1 y2

i and let θ̂i = (1− λL
S2 )+yi. Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E
[‖z‖2

2I(‖z‖2
2 > λL)

]
. (52)
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Proof: It is easy to verify that ‖θ̂ − y‖2
2 ≤ λL. Hence

E
[
‖θ̂ − θ‖2

2I(‖z‖2
2 > λL)

]
≤ 2E

[
‖θ̂ − y‖2

2I(‖z‖2
2 > λL)

]
+ 2E

[‖y − θ‖2
2I(‖z‖2

2 > λL)
]

≤ 2λLP(‖z‖2
2 > λL) + 2E

[‖z‖2
2I(‖z‖2

2 > λL)
]

≤ 4E
[‖z‖2

2I(‖z‖2
2 > λL)

]
. (53)

On the other hand,

E
[
‖θ̂ − θ‖2

2I(‖z‖2
2 ≤ λL)

]
≤ E

[
(2‖θ̂ − y‖2

2 + 2‖y − θ‖2
2)I(‖z‖2

2 ≤ λL)
]
≤ 4λL. (54)

Note that when S2 ≤ λL, θ̂ = 0 and hence ‖θ̂−θ‖2
2 = ‖θ‖2

2. When ‖z‖2
2 ≤ λL and S2 > λL,

‖θ̂ − θ‖2
2 =

∑

i

[(1− λL

S2
)yi − θi]2 = (1− λL

S2
)[S2 − λL− 2

∑

i

θiyi] + ‖θ‖2
2

= (1− λL

S2
)[

∑
(θi + zi)2 − λL− 2

∑

i

θi(θi + zi)] + ‖θ‖2
2

= (1− λL

S2
)(‖z‖2

2 − λL− ‖θ‖2
2) + ‖θ‖2

2 ≤ ‖θ‖2
2.

Hence E
[
‖θ̂ − θ‖2

2I(‖z‖2
2 ≤ λL)

]
≤ ‖θ‖2

2 and (52) follows by combining this with (53) and
(54).

The following bounds concerning a central chi-square distribution are from Cai (2002).

Lemma 7 Let X ∼ χ2
L and λ > 1. Then

P(X ≥ λL) ≤ e−
L
2
(λ−log λ−1) and EXI(X ≥ λL) ≤ λLe−

L
2
(λ−log λ−1). (55)

From (17) in Theorem 1 we can write 1√
T

Y ∗
i = G(f(i/T ))√

T
+ εi√

T
+ Zi√

n
+ ξi√

T
. Let (uj,k) =

T−
1
2 W · Y ∗ be the discrete wavelet transform of the binned and transformed data. Then

one may write

uj,k = θ′j,k + εj,k +
1√
n

zj,k + ξj,k (56)

where θ′jk are the discrete wavelet transform of (G(f(i/T ))/
√

T ) which are approximately
equal to the true wavelet coefficients of G (f), zj,k are the transform of the Zi’s and so are
i.i.d. N(0, 1) and εj,k and ξj,k are respectively the transforms of ( εi√

T
) and ( ξi√

T
). Then it

follows from Theorem 1 that
∑

j

∑

k

ε2j,k =
1
T

∑

i

ε2i ≤ C
(
m−4 + T−2d

)
, (57)

and for all i > 0 and a > 0 we have

E|ξj,k|i ≤ C ′
i log2k m

[
(mn)−

i
2 + T−(d+1/2)i

]
(58)

P(|ξj,k| > a) ≤ C ′
i log2k m

[
(a2mn)−

i
2 +

(
aT d+1/2

)−i
]
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from Theorem 1 and Lemma 5.
Lemmas 6 and 7 together yield the following result on the risk bound for a single block.

Proposition 1 Let the empirical wavelet coefficients uj,k = θ′j,k + εj,k + 1√
n
zj,k + ξj,k be

given as in (56) and let the block thresholding estimator θ̂j,k be defined as in (24). Then

(i). for some constant C > 0

E
∑

(j,k)∈Bi
j

(θ̂j,k−θ′j,k)
2 ≤ min{4

∑

(j,k)∈Bi
j

(θ′j,k)
2, 8λ∗Ln−1}+6

∑

(j,k)∈Bi
j

ε2j,k+CLn−2; (59)

(ii). for any 0 < τ < 1, there exists a constant Cτ > 0 depending on τ only such that for
all (j, k) ∈ Bi

j

E(θ̂j,k − θ′j,k)
2 ≤ Cτ ·min

{
max

(j,k)∈Bi
j

{(θ′j,k + εj,k)2}, Ln−1

}
+ n−2+τ . (60)

The following is a standard bound for wavelet approximation error. It follows directly
from Lemma 1 in Cai (2002).

Lemma 8 Let T = 2J and d = min(α − 1
p , 1). Set ḡJ(x) =

∑T
k=1

1√
T

G (f (k/n))φJ,k(x).
Then for some constant C > 0

sup
g∈F α

p,q(M,ε)
‖ḡJ −G (f) ‖2

2 ≤ CT−2d. (61)

We are now ready to prove our main results, Theorems 2 and 5.

6.4 Proof of Theorems 2 and 5

We shall only prove the results for the estimator f̂BJS . The proof for f̂NC is similar and
simpler. Let G̃ (f) = max

{
Ĝ (f), 0

}
for Negative Binomial and NEF-GHS distributions

and G̃ (f) = Ĝ (f) for other four distributions. We have

E‖f̂ − f‖2
2 = E‖G−1[G̃ (f)]−G−1[G (f)]‖2

2 = E‖(G−1)′ (g) [G̃ (f)−G (f)]‖2
2

≤ E
∫

V
(
G−1 (g)

)
[Ĝ (f)−G (f)]2dt

where g is a function in between G̃ (f) and G (f). We will first give a lemma which implies
V

(
G−1 (g)

)
is bounded with high probability, then prove Theorems 2 and 5 by establishing

a risk bound for estimating G (f).
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Lemma 9 Let Ĝ (f) be the BlockJS estimator of G (f) defined in Section 3. Then there
exists a constant C > 0 such that

sup
f∈F α

p,q(M,ε,v)
P

{∥∥∥Ĝ (f)
∥∥∥
∞

> C
}
≤ Cln

−l

for any l > 1, where Cl is a constant depending on l.

Proof of Lemma 9: Recall that we can write the discrete wavelet transform of the binned
data as

uj,k = θ′j,k + εj,k +
1√
n

zj,k + ξj,k

where θ′jk are the discrete wavelet transform of (G(f(i/T ))√
T

) which are approximately equal

to the true wavelet coefficients θjk of G(f). Note that
∣∣∣θ′jk − θjk

∣∣∣ = O
(
2−j(d+1/2)

)
, for d =

min (α− 1/p, 1) . Note also that a Besov Ball Bα
p,q (M) can be embedded in Bd∞,∞ (M1) for

some M1 > 0. (See, e.g., Meyer (1992)). From the equation above, we have

2j0∑

k=1

θ̃´j0,kφj0,k(t) +
J−1∑

j=j0

2j∑

k=1

θ′j,kψj,k(t) ∈ Bd
∞,∞ (M2)

for some M2 > 0. Applying the Block thresholding approach, we have

θ̂jk = (1− λLσ2

S2
(j,i)

)+θ′j,k + (1− λLσ2

S2
(j,i)

)+εj,k + (1− λLσ2

S2
(j,i)

)+

(
1√
n

zj,k + ξj,k

)

= θ̂1,jk + θ̂2,jk + θ̂3,jk , for (j, k) ∈ Bi
j , j0 ≤ j < J.

Note that
∣∣∣θ̂1,jk

∣∣∣ ≤
∣∣∣θ′j,k

∣∣∣ and so ĝ1 =
2j0∑

k=1

θ̃′j0,kφj0,k +
J−1∑

j=j0

2j∑

k=1

θ̂1,j,kψj,k ∈ Bd
∞,∞ (M2) . This

implies ĝ1 is uniformly bounded. Note that T
1
2

(∑
j,k

(
ε2j,k

))1/2
= T

1
2 · O (

m−2
)

= o (1) ,

so W−1 · T 1
2

(
θ̂2,jk

)
is a uniformly bounded vector. For 0 < β < 1/6 and a constant a > 0

we have

P
(∣∣∣θ̂3,jk

∣∣∣ > a2−j(β+1/2)
)

≤ P
(∣∣∣θ̂3,jk

∣∣∣ > aT−(β+1/2)
)

≤ P
(∣∣∣∣

1√
n

zj,k

∣∣∣∣ >
1
2
aT−(β+1/2)

)
+ P

(
|ξj,k| > 1

2
aT−(β+1/2)

)

≤ Aln
−l

for any l > 1 by Mill’s ratio inequality and equation (58). Let A = ∪
j,k

{∣∣∣θ̂3,jk

∣∣∣ > a2−j(β+1/2)
}

.

Then P (A) = Cln
−l. On the event Ac we have

ĝ3 (t) =
J−1∑

j=j0

2j∑

k=1

θ̂3,jkψj,k(t) ∈ Bβ
∞,∞ (M3) , for some M3 > 0
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which is uniformly bounded. Combining these results we know that for C sufficiently large,

sup
f∈F α

p,q(M,ε,v)
P

{∥∥∥Ĝ (f)
∥∥∥
∞

> C
}
≤ sup

f∈F α
p,q(M,ε)

P (A) = Cln
−l. (62)

Now we are ready to prove Theorems 2 and 5. Note that G−1 is an increasing and
nonnegative function, and V is a quadratic variance function ( see equation 1). Lemma 9
implies that there exists a constant C such that

sup
f∈F α

p,q(M,ε,v)
P

{∥∥V
(
G−1 (g)

)∥∥
∞ > C

} ≤ Cln
−l

for any l > 1. Thus it is enough to show supf∈F α
p,q(M,ε,v) E‖Ĝ (f)−G (f) ‖2

2 ≤ Cn−
2α

1+2α for

p ≥ 2 and Cn−
2α

1+2α (log n)
2−p

p(1+2α) for 1 ≤ p < 2 under assumptions in Theorems 2 and 5.

Proof of Theorem 2: Let Y and θ̂ be given as in (32) and (24) respectively. Then,

E‖Ĝ (f)−G (f) ‖2
2 =

∑

k

E(ˆ̃θj0,k − θ̃j,k)2 +
J−1∑

j=j0

∑

k

E(θ̂j,k − θj,k)2 +
∞∑

j=J

∑

k

θ2
j,k

≡ S1 + S2 + S3 (63)

It is easy to see that the first term S1 and the third term S3 are small.

S1 = 2j0n−1ε2 = o(n−2α/(1+2α)) (64)

Note that for x ∈ IRm and 0 < p1 ≤ p2 ≤ ∞,

‖x‖p2 ≤ ‖x‖p1 ≤ m
1

p1
− 1

p2 ‖x‖p2 (65)

Since f ∈ Bα
p,q(M), so 2js(

∑2j

k=1 |θjk|p)1/p ≤ M . Now (65) yields that

S3 =
∞∑

j=J

∑

k

θ2
j,k ≤ C2−2J(α∧(α+ 1

2
− 1

p
))
. (66)

Proposition 1, Lemma 8 and Equation (57) yield that

S2 ≤ 2
J−1∑

j=j0

∑

k

E(θ̂j,k − θ′j,k)
2 + 2

J−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ 6
J−1∑

j=j0

∑

k

ε2j,k + Cn−1 + 10
J−1∑

j=j0

∑

k

(θ′j,k − θj,k)2

≤
J−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ Cm−4 + Cn−1 + CT−2d (67)
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we now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α log2 n]. So,

2J1 ≈ n1/(1+2α). Then (67) and (65) yield

S2 ≤ 8λ∗
J1−1∑

j=j0

2j/L∑

i=1

Ln−1 + 8
J−1∑

j=J1

∑

k

θ2
j,k + Cn−1 + CT−2d ≤ Cn−2α/(1+2α) (68)

By combining (68) with (64) and (66), we have E‖θ̂ − θ‖2
2 ≤ Cn−2α/(1+2α), for p ≥ 2.

Now let us consider the case p < 2. First we state the following lemma without proof.

Lemma 10 Let 0 < p < 1 and S = {x ∈ Rk :
∑k

i=1 xp
i ≤ B, xi ≥ 0, i = 1, · · · , k}. Then

supx∈S

∑k
i=1(xi ∧A) ≤ B ·A1−p for all A > 0.

Let J2 be an integer satisfying 2J2 ³ n1/(1+2α)(log n)(2−p)/p(1+2α). Note that

2j/L∑

i=1




∑

(j,k)∈Bi
j

θ2
j,k




p
2

≤
2j∑

k=1

(θ2
j,k)

p
2 ≤ M2−jsp.

It then follows from Lemma 10 that

J−1∑

j=J2

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1




≤ Cn−

2α
1+2α (log n)

2−p
p(1+2α) . (69)

On the other hand,

J2−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1




≤

J2−1∑

j=j0

∑

b

8λ∗Ln−1 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .

(70)
Putting (64), (66), (69) and (70) together yields E‖θ̂ − θ‖2

2 ≤ Cn−
2α

1+2α (log n)
2−p

p(1+2α) .

Proof of Theorem 5: The proof of Theorem 5 is similar to that of Theorem 2 except the step
of equation (67). We will thus omit most of the details. For a general natural exponential
family the upper bound for

∑J−1
j=j0

∑
k ε2j,k in equation (67) is C

(
m−2 + T−2d

)
as given in

Section 2, so equation (67) now becomes

S2 ≤
J−1∑

j=j0

2j/L∑

i=1

min





8
∑

(j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1





+ Cm−2 + Cn−1 + CT−2d.

For m = cn−1/2, we have m−2 = c2n−1. When α − 1
p > 2α

1+2α , it is easy to see T−2d =
o
(
n−2α/(1+2α)

)
. Theorem 5 then follows from the same steps as in the proof of Theorem 2.
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